
Advanced Mathematical Models & Applications

Vol.6, No.3, 2021, pp.266-277

SPECTRAL ANALYSIS Of THE DISCONTINUOUS STURM-LIOUVILLE
OPERATOR WITH ALMOST-PERIODIC POTENTIALS

R.F. Efendiev∗, H.D. Orudzhev, S.J. Bahlulzade

Baku Engineering University, Baku, Azerbaijan

Abstract The spectral analysis for the Schrodinger operator with complex almost periodic potentials and the

discontinuous coefficient on the axis are studied. Investigated the main characteristics of the fundamental solutions

and the spectrum of the operator is analyzed. The inverse problem is formulated, a uniqueness theorem is proved,

a constructive procedure for the solution of the inverse problem is provided.

Keywords: discontinuous equation; spectral singularities; inverse spectral problem; continuous spectrum.

AMS Subject Classification: 34A36, 34L05, 47A10, 47A70.

Corresponding author: Rakib Efendiev, Baku Engineering University, Khirdalan city, Hasan Aliyev str., 120,

Baku, Azerbaijan, Tel.: +994502122834, e-mail: refendiyev@beu.edu.az

Received: 18 September 2021; Revised: 28 October 2021; Accepted: 15 November 2021;

Published: 27 December 2021.

1 Introduction

The purpose of the presented work is the spectral analysis of the differential operator L which
is generated by the expression

l(y) ≡ 1

ρ (x)
[− d2

dx2
+ q (x)] (1)

in the space L2 (R), where

ρ (x) =

{
1 x ≥ 0
−1 x < 0

, (2)

q (x) =

∞∑
n=1

qne
iΛnx (3)

and the condition

∞∑
n=1

|qn| <∞ (4)

is satisfied.

The set of exponents is a countable set of positive real numbers closed to the addition

M = {Λ1,Λ2,Λ3, .....Λn, .....} , Λn > 0, n ∈ N. (5)
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Let A (M) be a Banach algebra of almost periodic functions

A (M) =

f : f (t) =
∑
g∈M

fge
igt

 , ∥f∥ =
∑
g∈M

|fg| (6)

We define a new class Q (M) =
{
q : q (x) =

∑
n∈N qne

iΛnx,
∑

n∈N |qn|Λ−1
n <∞

}
of Besi-

covitch almost periodic functions such that the second primitive of (3) exists and belongs to
A (M).

Note that algebra A (M) will play an important role in our investigation and the equality
(6) will be called the basic condition.

We write α ≫ β or α ≪ β if Λα > Λβ or Λα < Λβ respectively and the symbol
∑

α:α>β

means summing over all α such that Λα > Λβ, also we will use α⊕ β = γ if Λα + Λβ = Λγ

For the Sturm–Liouville operator with different singularities (i.e. on the half-axis having an
arbitrary number of turning points, having singularities and turning points at the end-points of
the interval) the determination of the spectral function or normalizing constants has been studied
by Freiling & Yurko (2001). These results are mainly based on Volterra operator transformation
and contour integrations.

The string equation or wave equation in layered medium was investigated by Krein (1955),
Blagoveshchensky (1969), Grinberg (1990), Mamedov (2021), Demirbilek & Mamedov (2021)
and others.

Belishev (1987) first considered (1) with q (x) = 0 and solved the inverse problem of re-
constructing the ρ (x) of a finite-inhomogeneous string from the frequencies and energies of its
normalized characteristic vibrations in the case where ρ (x) can change its sign (is indefinite).

For periodic potentials (3) (i.e. Λn = n) this problem was studied by Efendiev (2011)
where the main characteristics of the fundamental solutions are investigated, the spectrum of
the operator is analyzed.

The interest in the investigation of the spectral properties of the differential operators with
periodic coefficients has been increased after the study of Gasymov (1980).

In the cited paper the special solutions of the equation −y′′ + q(x)y = λ2y were constructed
and the spectral data {sn}n∈N were determined. It was shown that the inverse problem recon-
structing of the operator L from this sequence has a solution. Afterwards, the result of Gasymov
(1980) was extended by Gasymov & Orudzhev (1986) to almost-periodic potentials of the form
(3). The operator L generated by the finite sum in (3) was studied by Sarnak (1982) who, in
particular, showed that the spectrum L always coincides with [0,∞).

2 Properties of the Floquet solution of the equation l(y) = λ2y

The existence of the Floquet solutions of the equation l(y) = λ2y which will play an important
role in the investigation of the spectrum of the operator L was considered in Bahlulzadeh (2017),
where it was shown that f±1 (x, λ) and f±2 (x, λ) are the solutions of the equation

−y′′ + q(x)y = λ2ρ (x) y, λ - is a complex parameter (7)

satisfy the following conditions

lim
Imx→+∞

f±1 (x, λ) e∓iλx = 1 for ± Imλ > 0

lim
Imx→−∞

f±2 (x, λ) e∓λx = 1 for ±Reλ > 0,

and fulfill the following theorem
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Theorem 1. Equation (7) with potential q (x) ∈ Q (M) and ρ (x) defined as (2) has the partic-
ular solutions of the form

f±1 (x, λ) = e±iλx

(
1 +

∞∑
n=1

∞∑
α=n

Vnα
Λn ± 2λ

eiΛαx

)
for x ≥ 0 (8)

f±2 (x, λ) = e±λx

(
1 +

∞∑
n=1

∞∑
α=n

Vnα
Λn ∓ 2iλ

eiΛαx

)
for x < 0 (9)

here the numbers Vnα are determined from the following relations

Λα (Λα − Λn)Vnα +
∑

β⊕γ=n

Vnβqγ = 0 (10)

qα +
∑

β⊕γ=n

Vnβqγ = 0. (11)

and series
∞∑
n=1

Λ−1
n

∞∑
α=n

Λα (Λα − Λn) |Vnα| (12)

converges.

We easily see that at the points λ = ∓Λn
2 ,
(
λ = ± iΛn

2

)
n ∈ N there can be simple poles to

the function f±1 (x, λ)(f±2 (x, λ))

Remark 1. If λ ̸= −Λn
2 and Imλ > 0, then f+1 (x, λ) ∈ L2 (0,∞).

Remark 2. If λ ̸= − iΛn
2 and Reλ > 0, then f+2 (x, λ) ∈ L2 (−∞, 0).

Taking into account that the potential q (x) can be extended to the upper semi-plane as an
analytic function, we find

W [f+1 (x, λ) , f−1 (x, λ)] = −2iλ ̸= 0, for λ ̸= 0,±Λn

2
(13)

W [f+2 (x, λ) , f−2 (x, λ)] = −2λ ̸= 0, for λ ̸= 0,± iΛn

2
. (14)

Therefore, the functions f+1 (x, λ) , f−1 (x, λ) (f+2 (x, λ) , f−2 (x, λ)) are linearly independent
solutions of the equation (7) for λ ̸= 0,±Λn

2 , (±
iΛn
2 ).

Consequently, any solution of the equation (7) corresponding to x ≥ 0 (x < 0) can be
represented as a linear combination of the solutions f+1 (x, λ) , f−1 (x, λ), (f+2 (x, λ) , f−2 (x, λ)).

We have {
f±2 (x, λ) = A± (λ) f+1 (x, λ) +B± (λ) f−1 (x, λ) , x > 0
f±1 (x, λ) = C± (λ) f+2 (x, λ) +D± (λ) f−2 (x, λ) , x < 0

(15)

It means that the solutions (8) and (9) can be predetermined as

f±1 (x, λ) =

{
e±iλx

(
1 +

∑∞
n=1

∑∞
α=n

Vnα
Λn∓2λe

iΛαx
)
, x ≥ 0

C± (λ) f+2 (x, λ) +D± (λ) f−2 (x, λ) , x < 0
(16)

and

f±2 (x, λ) =

{
e±λx

(
1 +

∑∞
n=1

∑∞
α=n

Vnα
Λn±2iλe

iΛαx
)
, x < 0

A± (λ) f+1 (x, λ) +B± (λ) f−1 (x, λ) , x ≥ 0
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By taking into account the formulas (15) and (16) we find
A (λ) = A+ (λ) = iD− (λ) =

W [f+
2 (x,λ),f−

1 (x,λ)]
2iλ for λ ∈ S4

B (λ) = A− (λ) = iC− (λ) =
W [f−

2 (x,λ),f−
1 (x,λ)]

2iλ for λ ∈ S3

C (λ) = B+ (λ) = iD+ (λ) =
W [f+

1 (x,λ),f+
2 (x,λ)]

2iλ for λ ∈ S1

D (λ) = B− (λ) = −iC+ (λ) =
W [f+

1 (x,λ),f−
2 (x,λ)]

2iλ for λ ∈ S2

(17)

where Sk =
{

kπ
2 < arg λ < (k+1)π

2

}
, k = 0, 3.

Then (16) takes the following form
f+2 (x, λ) = A (λ) f+1 (x, λ) + C (λ) f−1 (x, λ)
f−2 (x, λ) = B (λ) f+1 (x, λ) +D (λ) f−1 (x, λ)
f+1 (x, λ) = iD (λ) f+2 (x, λ)− iC (λ) f−2 (x, λ)
f−1 (x, λ) = −iB (λ) f+2 (x, λ) + iA (λ) f−2 (x, λ)

(18)

By dividing both sides of (18) by C (λ) and B (λ) we obtain the solutions of the equation
(7) 

U+
2 (x, λ) = A(λ)

C(λ)f
+
1 (x, λ) + f−1 (x, λ)

U−
2 (x, λ) = D(λ)

B(λ)f
−
1 (x, λ)− f+1 (x, λ)

U+
1 (x, λ) = iD(λ)

C(λ) f
+
2 (x, λ)− if−2 (x, λ)

U−
1 (x, λ) = iA(λ)

B(λ) f
−
2 (x, λ)− if+2 (x, λ)

(19)

According to a physical sense of the solutions, we will call 1
B(λ) and 1

C(λ) as a transmission

coefficient and A(λ)
C(λ) ,

A(λ)
B(λ) ,

D(λ)
C(λ) and D(λ)

B(λ) as a reflection coefficient from the right and left to (7)
respectively.

3 The spectrum of the operator L

To study the spectrum of the operator L at first, we calculate the kernel of the resolvent of
the operator

(
R− λ2I

)
. First, let us prove the following theorem, from which we obtain the

existence of the resolvent operator Rλ.

Theorem 2. The operator L has no pure real and pure imaginary eigenvalues.

Proof. The equation (7) has the fundamental solutions f+1 (x, λ) , f−1 (x, λ)
(
f+2 (x, λ) , f−2 (x, λ)

)
on |Imλ| < ε

2 (|Reλ| < ε
2) and λ ̸= 0, λ ̸= ±Λn

2 , λ ̸= ± iΛn
2 , n ∈ N. Then when λ2 > 0 and

Imλ = 0 the solution of the equation (7) can be written in the form of

y(x, λ) = C1e
iReλx

(
1 +

∞∑
n=1

∞∑
α=n

Vnα
Λn + 2 |λ|

eiΛαx

)
+

+C2e
−iReλx

(
1 +

∞∑
n=1

∞∑
α=n

Vnα
Λn − 2 |λ|

eiΛαx

)
and when Reλ = 0

y(x, λ) = C̃1e
iImλx

(
1 +

∞∑
n=1

∞∑
α=n

Vnα
Λn + 2i |λ|

eiΛαx

)
+

+C̃2e
−iImλx

(
1 +

∞∑
n=1

∞∑
α=n

Vnα
Λn − 2i |λ|

eiΛαx

)
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In both cases, y(x, λ) /∈ L2(−∞,∞), because the principal parts of the solutions are periodic.

So, we proved that the operator L has no pure real and pure imaginary eigenvalues.

Note that similar results easily can be obtained for the cases when λ = 0, λ = ±Λn
2 , λ =

± iΛn
2 , n ∈ N.

We proved that, for any complex number, λ outside of {Reλ = 0} ∪ {Imλ = 0} there exists

one to one resolvent operator Rλ =
(
L− λ2I

)−1
and using the general methods for the kernel

of the resolvent, we get

R11(x, t, λ) = − 1

2iλC (λ)

{
f+1 (x, λ), f+2 (t, λ), t ≤ x
f+1 (t, λ), f+2 (x, λ), t > x

λ ∈ S0 (20)

R12(x, t, λ) = − 1

2iλD (λ)

{
f+1 (x, λ), f−2 (t, λ), t ≤ x
f+1 (t, λ), f−2 (x, λ), t > x

λ ∈ S1 (21)

R13(x, t, λ) =
1

2iλB (λ)

{
f−1 (x, λ), f−2 (t, λ), t ≤ x
f−1 (t, λ), f−2 (x, λ), t > x

λ ∈ S2 (22)

R14(x, t, λ) =
1

2iλA (λ)

{
f−1 (x, λ), f+2 (t, λ), t ≤ x
f−1 (t, λ), f+2 (x, λ), t > x

λ ∈ S3 (23)

where Sk =
{

kπ
2 < arg λ < (k+1)π

2

}
, k = 0, 3.

From the formulae (20) – (23) it is easy to see that the points λ = 0, λ = ±Λn
2 , λ = ± iΛn

2 ,
n ∈ N are the poles of the resolvent, therefore, they must be eigenvalues of the operator L.
According to the theorem, they don’t exist. Then According to Naimark (1967), the points
λ2 = ±(Λn

2 )2 are spectral singularities of the operator L.

Lemma 1. The eigenvalues of the operator L are finite and coincide with the square of zeros of
the functions A (λ) , B (λ) , C (λ) and D (λ) from the sectors Sk, k = 0, 1, 2, 3 respectively.

Proof. For the solutions, f+1 (0, λ), f+2 (0, λ) we can obtain the asymptotic equalities

f
±(j)
1 (0, λ) = ± (iλ)j C1 + o (1) , for |λ| → ∞, j = 0, 1, C1 > 0

f
±(j)
2 (0, λ) = ± (λ)j C2 + o (1) , for |λ| → ∞, j = 0, 1, C2 > 0

For simplicity, we prove the first equality.

∣∣∣f±(j)
1 (0, λ)

∣∣∣ = ± (iλ)j +
∞∑
n=1

∞∑
α=n

(iλ)j |Vnα|
|Λn + 2λ|

+
∞∑
n=1

∞∑
α=n

(iΛα)
j |Vnα|

|Λn + 2λ|
=

= ± (iλ)j +
∞∑
n=1

∞∑
α=n

|Vnα|
|Λn + 2(Reλ+ iImλ)|

=

= 1 +
∞∑
n=1

∞∑
α=n

|Vnα|√
(Λn + 2Reλ)2 + 4Im2λ

≤ 1 +
1

|Imλ|

∞∑
n=1

∞∑
α=n

Λα |Vnα|
Λn

270



R. EFENDIEV et al.: SPECTRAL ANALYSIS Of THE DISCONTINUOUS STURM-LIOUVILLE...

Since ∣∣∣f±(j)
2 (0, λ)

∣∣∣ = ± (λ)j +

∞∑
n=1

∞∑
α=n

(λ)j |Vnα|
|Λn − 2iλ|

+

∞∑
n=1

∞∑
α=n

(iΛα)
j |Vnα|

|Λn − 2iλ|
=

= |λ|j +
∞∑
n=1

∞∑
α=n

|λ|j |Vnα|√
(Λn + 2Imλ)2 + 4Re2λ

+
∞∑
n=1

∞∑
α=n

(|Λα|)j |Vnα|√
(Λn + 2Imλ)2 + 4Re2λ

≤

≤ |λ|j + 1

|Reλ|

∞∑
n=1

∞∑
α=n

|λ|j Λα |Vnα|
Λn

+
1

|Reλ|

∞∑
n=1

∞∑
α=n

(Λα)
2 |Vnα|
Λn

≤

≤ |λ|j (1 + 1

|Reλ|

∞∑
n=1

∞∑
α=n

Λα |Vnα|
Λn

) +
1

|Reλ|

∞∑
n=1

∞∑
α=n

(Λα)
2(Λα − Λn) |Vnα|
Λn(Λα − Λn)

≤

≤ |λ|j (1 + 1

|Reλ|

∞∑
n=1

∞∑
α=n

Λα |Vnα|
Λn

) +
1

|Reλ|

∞∑
n=1

∞∑
α=n

Λα

Λn(Λα − Λn)
Λα(Λα − Λn) |Vnα| ≤

≤ |λ|j (1 + 1

|Reλ|

∞∑
n=1

∞∑
α=n

Λα |Vnα|
Λn

) +
2

|Reλ|

∞∑
n=1

∞∑
α=n

Λα(Λα − Λn) |Vnα|

Therefore, as |λ| → ∞, we obtain{
f
±(j)
1 (0, λ) = ± (iλ)j C1 + o (1) , for |λ| → ∞, j = 0, 1, C1 > 0

f
±(j)
2 (0, λ) = ± (λ)j C2 + o (1) , for |λ| → ∞, j = 0, 1, C2 > 0

Then we get the coefficients defined by the formula (17) A(λ),B(λ),C(λ),D(λ) satisfies the
following asymptotic:

A(λ) =
1− i

2
+ o (1) λ ∈ IV quadrant

B(λ) =
1 + i

2
+ o (1) λ ∈ III quadrant

C(λ) =
1 + i

2
+ o (1) λ ∈ I quadrant

D(λ) =
1− i

2
+ o (1) λ ∈ II quadrant. (24)

From this, it follows that the zeros of the functions A (λ) , B (λ) , C (λ) andD (λ) from the sectors
Sk, k = 0, 1, 2, 3 respectively are finite.

Theorem 3. The continuous spectra of the operator L consists of axis Imλ = 0 and the con-
tinuous spectra may have spectral singularities at the points ±(Λn

2 )2.

Proof. Since the resolvent exists, we can say that L is a closed operator. That’s why we will
only prove that the range of the operator L − λ2I is dense everywhere in L2 (−∞,+∞) when
λ2 ∈{Imλ = 0} and doesn’t coincide with the whole space, because the operator L doesn’t have
eigenvalues.

Taking into account Remark 2, we will investigate the function

R (x, t, λ) =


R11 (x, t, λ) λ ∈ I quadrant
R12(x, t, λ) λ ∈ II quadrant
R21 (x, t, λ) λ ∈ III quadrant
R22 (x, t, λ) λ ∈ IV quadrant

in the neighborhood of poles λ∗ from {Imλ = 0}. Without loss of generality, we can investigate
R (x, t, λ) in the neighborhood of poles λ∗0 from {Imλ = 0}. Then the number λ∗0 coincides with
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one of the numbers ±Λn
2 . From (20) – (23) it follows that lim

λ→λ∗
0

(λ − λ∗0)R (x, t, λ) = R0 (x, t)

exists and R0 (x, t) is a bounded function with respect to all the variables.

Let θ(x) be an arbitrary finite function. Then ϕ(x) =
∫∞
−∞R0 (x, t) θ(t)dt is a bounded

solution of Equation (7) for λ = Λn
2 . Therefore ϕ(x) = C0f

+
1 (x, λ∗0). Comparison of the last

relation with formulas (20) – (23) shows that if λ∗0 ̸= Λn
2 then C0 = 0 and so the kernel of the

resolvent has removable singularity at the point λ∗0. So there is a case λ∗0 =
Λn
2 , n ∈ N where the

kernel of resolvent has poles of the first order. Since f+1 (x, λ∗0) /∈ L2 (−∞,∞) then λ20 =
(
Λn
2

)2
is a spectral singularity of the operator L according to (Naimark,1967). (Analogously we can

show that λ20 = −
(
Λn
2

)2
are spectral singularities of the operator L).

Suppose that there exists a function ψ (x) ∈ L2 (−∞,+∞) such that ψ (x) ̸= 0 and∫ ∞

−∞
(Lf − λf)ψ (x) dx = 0 (25)

for any f (x) ∈ D (L).

From (25) we get that ψ (x) ∈ D (L∗) and ψ (x) are eigenfunctions of the operator L∗

corresponding to the eigenvalue λ. More precisely, ψ (x) is the solution of the equation

z′′ + q (x) z = λz (26)

in L2 (−∞,∞). We get that ψ (x) ≡ 0 since the operator generated by the expression in the left
part of (26) is a L type operator. We got a contradiction. Therefore, the range of the operator
is dense everywhere on L2 (−∞,∞).

Suppose that ψ (x) is a finite function belonging to the range of the operator
(
L− λ2I

)
,

λ ̸= 0, λ ̸= ±Λn
2 , λ ̸= ± iΛn

2 , n ∈ N, in other words there exist y (x) ∈ D (L) such that

l (y)− λy = ψ (x) .

It is easy to see that y(τ) → 0 when |x| → ∞, s = 0, 1.

Now let η (x, λ) be the bounded solution of (26) when λ ∈{Imλ = 0}. It is followed by
theorem 1 that such a solution exists. Then the following equation is satisfied:∫ ∞

−∞
(ly − λy) η (x, λ) dx =

∫ ∞

−∞
ψ (x) η (x, λ) dx =

=

∫ ∞

−∞
y
[
η′′ + q (x) η (x, λ)− λ η (x, λ)

]
dx = 0

This equation can be obtained by integrating by parts. From here we get that if

ψ (x) =

{
η (x, λ) , |x| ≤ a
0 , |x| > a

where a > 0 then ∫ ∞

−∞
ψ (x) η (x, λ) dx =

∫ a

−a
|η (x, λ)|2 dx ̸= 0,

in other words ψ (x) /∈ R
(
L− λ2I

)
Thus R

(
L− λ2I

)
doesn’t coincide with the whole space which we needed to prove.
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Now taking f±n (x) = Vnnf
∓
1

(
x,∓Λn

2

)
and (24) into account, we calculate

lim
λ→Λn

2

(Λn − 2λ)R11 (x, t, λ) = lim
λ→Λn

2

(Λn − 2λ) 1
2iλf

+
1 (x, λ)×

×
[
f+1 (t, λ)

W [f+
2 ,f−

1 ]
W [f+

1 ,f+
2 ]

+ f+1 (x, λ) f−1 (t, λ)

]
=

= 1
iΛn

Vnnf
+
1

(
x, Λn

2

)
f+1
(
t, Λn

2

)
+ 1

iΛn
Vnnf

+
1

(
x, Λn

2

)
f+1
(
t, Λn

2

)
=

= 2
iΛn

Vnnf
+
1

(
x, Λn

2

)
f+1
(
t, Λn

2

)
(27)

Analogously we can calculate that

lim
λ→ iΛn

2

(Λn − 2iλ)R12 (x, t, λ) =
2

iΛn
Vnnf

−
2

(
x,
iΛn

2

)
f−2

(
t,
iΛn

2

)
, (28)

lim
λ→−Λn

2

(Λn + 2λ)R21 (x, t, λ) =
2

iΛn
Vnnf

−
1

(
x,−Λn

2

)
f−1

(
t,−Λn

2

)
(29)

lim
λ→− iΛn

2

(Λn + 2iλ)R22 (x, t, λ) =
2

iΛn
Vnnf

+
2

(
x,− iΛn

2

)
f+2

(
t,− iΛn

2

)
(30)

4 Eigenfunction expansions

Let L be the operator generated by 1
ρ(x)

{
− d2

dx2 + q (x)
}
in the space L2 (−∞,+∞, ρ (x))

We proved that when Imλ ≥ 0, Reλ ≥ 0 the kernel of the resolvent of the operator L is in
the form of

R11 (x, t, λ) = − 1

2iλC (λ)

{
f+1 (x, λ) f+2 (t, λ) when t ≤ x
f+1 (t, λ) f+2 (x, λ) when t > x

(31)

Lemma 2. Let ψ (x) be an arbitrary twice differentiable continuous function belonging to
L2 (−∞,∞, ρ (x)). Then∫ ∞

−∞
R (x, t, λ) ρ (t)ψ (t) dt = −ψ (x)

λ2
+

1

λ2

∫ ∞

−∞
R (x, t, λ) g (t) dt (32)

where
g (x) = −ψ′′ (x) + q (x)ψ (x) ∈ L2 (−∞,∞)

Proof. From (31) we get that∫ +∞

−∞
R11 (x, t, λ) ρ (t)ψ (t) dt = −f

+
1 (x, λ)

2iλC (λ)

∫ x

−∞

{
− 1

λ2
f+2

′′
(t, λ) +

1

λ2
q (t) f+2 (t, λ)

}
ψ (t) dt−

−f
+
2 (x, λ)

2iλC (λ)

∫ ∞

x

{
− 1

λ2
f+1

′′
(t, λ) +

1

λ2
q (t) f+1 (t, λ)

}
ψ (t) dt

By integrating this identity twice by parts method and using (17) we obtain that∫ ∞

−∞
R (x, t, λ) ρ (t)ψ (t) dt = −ψ (x)

λ2
+

1

λ2

∫ ∞

−∞
R (x, t, λ) g (t) dt

where
g (x) = −ψ′′ (x) + q (x)ψ (x) ∈ L2 (−∞,∞)

It’s easy to prove that if the conditions of the lemma satisfies, then when |λ| → ∞∫ ∞

−∞
R (x, t, λ) ρ (t)ψ (t) dt = −ψ (x)

λ2
+O

(
1

λ2

)
(33)

Lemma is proved.
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Integrating both hand sides of (32) along the circle |λ| = R and passing to the limit as
R→ ∞ we get

ψ (x) = − lim
R→∞

1

2πi

∫
|λ|=R

2λdλ

∫ ∞

−∞
R (x, t, λ) ρ (t)ψ (t) dt

The function
∫∞
−∞R (x, t, λ) ρ (t)ψ (t) dt is analytical inside the contour with respect to λ

excepting the points λ = λn, n ∈ N, λ = ±Λn
2 , λ = ± iΛn

2 .

Let Γ+
0

(
Γ−
0

)
denote the contour formed by the segments

[
0, Λ1

2 − δ
]
, ...,

[
Λn
2 − δ, Λn

2 + δ
]([

0,−Λ1
2 − δ

]
, ...,

[
−Λn

2 − δ,−Λn
2 + δ

])
and the semicircles of the radius δ with centers at the

points Λn
2

(
−Λn

2

)
located in the upper (lower) half-plane and Γ+

i

(
Γ−
i

)
i = 1, 2, 3 denote the

contour formed by rotating Γ+
i

(
Γ−
i

)
by angle iπ

2 i = 1, 2, 3. Then

ψ (x) = − 1

2iπ

∫
Γ−
0

2λdλ

∫ +∞

−∞
[R22 (x, t, λ)−R11 (x, t, λ)] ρ (t)ψ (t) dt−

− 1

2iπ

∫
Γ−
1

2λdλ

∫ +∞

−∞
[R11 (x, t, λ)−R12 (x, t, λ)] ρ (t)ψ (t) dt−

− 1

2iπ

∫
Γ−
2

2λdλ

∫ +∞

−∞
[R12 (x, t, λ)−R21 (x, t, λ)] ρ (t)ψ (t) dt−

− 1

2iπ

∫
Γ−
3

2λdλ

∫ +∞

−∞
[R21 (x, t, λ)−R22 (x, t, λ)] ρ (t)ψ (t) dt+

+ Res
λ=− iΛn

2

R22 (x, t, λ) + Res
λ=Λn

2

R11 (x, t, λ) + Res
λ= iΛn

2

R12 (x, t, λ) + Res
λ=−Λn

2

R21 (x, t, λ)+

+
l∑

n=1

Res

(
2λ

∫ +∞

−∞
R (x, t, λ) ρ (t)ψ (t)

)∣∣∣∣
λ=αn

Let’s calculate every term separately:

R11 (x, t, λ)−R22 (x, t, λ) =
f+2 (x, λ) f+2 (t, λ)

2iλA (λ)C (λ)
,

R21 (x, t, λ)−R12 (x, t, λ) =
f−2 (x, λ) f−2 (t, λ)

2iλB (λ)D (λ)

R12 (x, t, λ)−R11 (x, t, λ) =
f+1 (x, λ) f+1 (t, λ)

2λC (λ)D (λ)

R22 (x, t, λ)−R21 (x, t, λ) =
f−1 (x, λ) f−1 (t, λ)

2λA (λ)B (λ)
.

The residues of the resolvents R11 (x, t, λ), R12 (x, t, λ),R21 (x, t, λ) and R22 (x, t, λ) at λ =
Λn
2 , λ = iΛn

2 , λ = −Λn
2 , λ = − iΛn

2 respectively are equal to the limits which we calculated in (27)
– (30). Then for any function ψ (x) ∈ L2 (−∞,∞, ρ (x)) we have the following eigenfunction
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expansion:

ψ (x) = − 1

2π

∫
Γ+
0

1

A (λ)C (λ)
dλ

∫ +∞

−∞
f+2 (x, λ) f+2 (t, λ) ρ (t)ψ (t) dt

+
1

2π

∫
Γ+
2

1

B (λ)D (λ)
dλ

∫ +∞

−∞
f−2 (x, λ) f−2 (t, λ) ρ (t)ψ (t) dt

+
1

2iπ

∫
Γ+
1

1

C (λ)D (λ)

∫ +∞

−∞
f+1 (x, λ) f+1 (t, λ) ρ (t)ψ (t) dt

− 1

2iπ

∫
Γ+
3

1

A (λ)B (λ)
dλ

∫ +∞

−∞
f−1 (x, λ) f−1 (t, λ) ρ (t)ψ (t) dt

+
2

iΛn
Vnnf

+
1

(
x,

Λn

2

)
f+1

(
t,
Λn

2

)
+

2

iΛn
Vnnf

−
2

(
x,
iΛn

2

)
f−2

(
t,
iΛn

2

)

+
2

iΛn
Vnnf

−
1

(
x,−Λn

2

)
f−1

(
t,−Λn

2

)
+

2

iΛn
Vnnf

+
2

(
x,− iΛn

2

)
f+2

(
t,− iΛn

2

)

+
∑l

n=1 Res
(
2λ
∫ +∞
−∞ R (x, t, λ) ρ (t)ψ (t)

)∣∣∣
λ=Λn

(34)

5 Inverse problem

From (27) – (30) it follows that the kernels of the resolvent R11 (x, t, λ), R22 (x, t, λ), R21 (x, t, λ)
and R12 (x, t, λ) admits meromorphic continuations in clockwise direction to the next quadrant
and may have poles at the points ±Λn

2 , ± iΛn
2 , n ∈ N outside of Sk. Here

Sk =

{
kπ

2
< arg λ <

(k + 1)π

2

}
, k = 0, 1, 2, 3.

The poles of the resolvent are called quasi – stationary states of the operator L. In spec-
tral expansion (34) the numbers Vnn, n ∈ N , play as a part of normalizing corresponding to
quasieigenfunctions of the operator L. So we can formulate the inverse problem about the
reconstruction of the potential of the equation (7).

From Theorem 1 it is easy to see that the functions f±1 (x, λ) are not defined at the points
∓Λn

2 .

The following limit

≈
lim

λ→∓Λn
2

(
λ± Λn

2

)
f±1 (x, λ) =

{
0, λ /∈M
f±n (x) , λ = λn, n ∈ N

(35)

exists and is uniform in X. Here the symbol
≈
lim means the limit is non - tangent direction

when λ tends to λ∗ = {∓Λn
2 ,∓

iΛn
2 } in such a way that +δ < arg (λ− λ∗) < π − δ for arbitrary

but fixed δ > 0. The function f±n (x) is a solution of (7) with λ = ∓Λn
2 linearly dependent on

f∓1
(
x,∓Λn

2

)
. Consequently, there exists a complex sn, n ∈ N such that

f±n (x) ≡ snf
∓
1

(
x, ∓Λn

2

)
(36)

As in Simbirskii (1992) we can the following definition.
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Definition 1. The set {sn}n∈N is called the spectral data set of the operator L.

It follows from (36) that

e−iΛn
2

x
∑

α:α>>n

Vnαe
iΛαx ≡ sne

iΛn
2

x

(
1 +

∑
m∈N

2

Λn + Λm

∑
α:α>>m

Vmαe
iΛαx

)
(37)

and by virtue of uniqueness theorem for almost – periodic functions, we have

Vn,n = −sn, n ∈ N

Vn,α = −sn
∑

m:m<<α⊕n
2Vm,α⊕n

Λn+Λm
, α > n

Let a set of numbers {sn}n∈N be given. We shall construct a potential q (x) ∈ Qp (M) such
that the spectral data set of the operator L with this potential is identical with the set {sn}n∈N .
In (36) comparing the formulas for these functions, we see that sn = Vnn, therefore

f±n (x) = Vnnf
∓
1

(
x,∓Λn

2

)
(38)

Inverse problem: Given the spectral data {sn}n∈N construct the potential q (x) ∈ Qp (M).
Using the results obtained above, we arrive at the following procedure for the solution of the
inverse problem:

1. Taking into account (38), calculate

Vnα+n = Vnn

α∑
m=1

Vmα

m+ n

from which all the numbers Vnα, α = 1, 2, ...; n = 1, 2, ......; n < α are defined.

2. From recurrent formula (10), (11) find all numbers qn.

So, the inverse problem has a unique solution and the numbers Vnα, α = 1, 2, ...; n =
1, 2, ......; n < α and qn are defined constructively by spectral data.

Thus we arrive at the following theorem.

Theorem 4. The specification of spectral data uniquely determines the potential q(x).
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